

Rockets!: Student Activity Sheet

Name:_____

Date:

Part 2: Deliver the Payload

Using the rocket, determine how much water and effervescent tablets you need to deliver a payload into "outer space." Each test launch costs a lot of money, so **fewer** launches are better.

Launch #	Amount of Water (mL)	Sketch the Amount of Effervescent Tablet	Deliver Payload (circle one)
1			Y N
2			Y N
3			Y N
4			Y N
5			Y N

How many launches did it take to complete the challenge?

Part 3: How High Can You Fly?

Continue to change the amount of water and effervescent tablet and see how high you can launch the rocket.

Launch #	Amount of Water (mL)	Sketch the Amount of Effervescent Tablet	Approximate Height
1			
2			
3			
4			
5			

How did you measure the height your rocket flew?

Part 4: Size and Scale of the Planets in Our Solar System

1. Using a pencil, draw a 10 mm line under **Earth - Actual**. This line represents the diameter, or, the middle of the Earth. This measurement can also be thought of as the equator of Earth.

Earth	Earth
For our model, 10mm will represent the size of Earth.	Actual
Uranus	Uranus
Prediction	Actual
Mercury	Mercury
Prediction	Actual
Venus	Venus
Prediction	Actual
Mars	Mars
Prediction	Actual
Jupiter Prediction	
Actual	
Saturn Prediction	
Actual	
Neptune	Neptune
Prediction	Actual

Which planet's size, compared to Earth, surprised you the most? Explain your reasoning.