Parts Per Million

Overview

Water dissolves tiny amounts of some things. For example, water may dissolve a small amount of the copper pipes that carry it through your school. The amount of copper in the water is measured in "parts per million." A million is such a huge number that we can't picture what a part in a million might be. Can you taste a few parts per million of something in drinking water? Can you see it? Can it make you sick? In this activity, students get some answers.

Materials

*Materials to be supplied by the teacher or the students are marked with an asterisk.

Materials for the whole class

- 4 dropper bottles of red dye
- 2 column "Million Millionth" transparency (from black line master below)
- Powers of Ten transparency (from black line master below)
- Chemplate[®] Wells transparency (from black line master below)

Materials for groups of 2

- 1 Chemplate[®] with white paper under it and clean water in the large well
- Access to 1 dropper bottle with red dye
- 9-oz cup of rinse water
- *paper towels

Procedure (for the Teacher)

- 1. Show the 2-column "Million Millionth" transparency and ask students for concrete examples of a million things. Also, ask for concrete examples of a millionth of something. Write these into the columns. Some examples:
 - A million people would fill 10 stadiums.
 - Work out how high a stack of a million sheets of paper would be: 1 ream (500 sheets) is 2 inches high. 1000 sheets are 4 inches high. A million sheets are 4,000 inches high. 4,000 inches is 333 feet. That's as high as a 28 story building.
 - One second is a millionth of about 12 days (and a billionth of more than 30 years).
 - One inch is a millionth of about 16 miles.
 - If a singer sells a million copies of her CD, then a single CD is 1 part per million (1 ppm).
- 2. Discuss which is larger, 1 million or 1 billion? 1 millionth or 1 billionth? (Use the Powers of Ten transparency.)
- 3. Explain how 10 ml of a 10 % solution by volume of red dye is made. [1 ml of pure red dye and 9 ml of water.] Students typically think that it is 1 ml of red dye

and 10 ml of water. Discuss why it's 9 ml of water and not 10. The red dye supplied in the kit is a 10% solution.

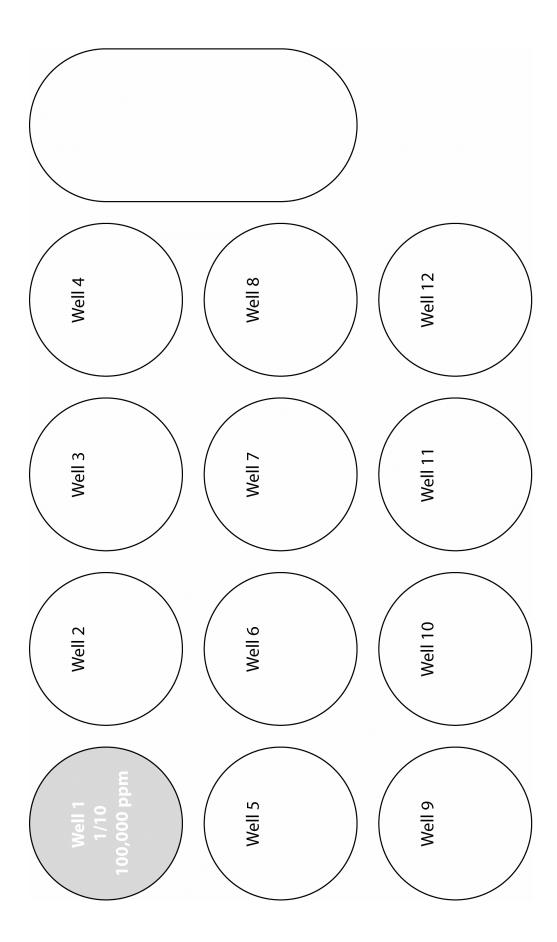
4. Add 6 drops of red dye to well #1 on the Chemplate.[®] Move a drop of this to well #2. Rinse the pipette in a cup of clean water, and then add 9 drops of clean water from the large well on the Chemplate[®] to well #2. Stir with the pipette tip.

[Demonstrate this whole procedure for students. Show them how to use the pipette—hold it vertically, avoid air bubbles, and don't let fluid get into the bulb.]

- 5. Repeat by taking 1 drop from well #2, placing it in well #3, rinsing the pipette, and adding 9 drops of water. Tell students they'll continue this procedure until they can no longer see any color in the water.
- 6. Tell students to record in their notebooks the concentration in parts per million of red dye in the first 7 wells.
- 7. After students finish, use the Chemplate[®] transparency and overhead projector (see Chemplate[®] black line master) to fill in the concentration of red dye in each well for the whole class. The concentration of red dye in well #1 is 10% (this is the concentration of red dye provided). How many parts per million is a 10% solution? [100,000 ppm] Ask students the concentration of red dye in well #2. How many parts per million? [10,000 ppm] Proceed through all of the wells until you reach the concentration where no red dye is apparent (usually 1 ppm).
- 8. Discuss **observing results** versus **inferring** from this evidence that red dye is present. *We do not observe any red dye, but we can infer that some red dye must be there*.

One Million	One Million <u>th</u>

PARTS PER													1 ppt	100 ppm	10 ppm	1 ppm	100 ppb	10 ppb	1 ppb
FRACTION	1,000,000,000/1	100,000,000/1	10,000,000/1	1,000,000/1	100,000/1	10,000/1	1,000/1	100/1	10/1	1/1	1/10	1/100	1/1,000	1/10,000	1/100,000	1/1,000,000	1/10,000,000	1/100,000,000	1/1,000,000,000
EXPONENT	10^9	10^{8}	10^7	10^{6}	10^5	10^4	10^3	10^2	10 ¹	10^0	10 ⁻¹	10^{-2}	10 ⁻³	10 ⁻⁴	10-5	10 ⁻⁶	10^{-7}	10 ⁻⁸	10 ⁻⁹
# OF ZEROES	6	8	7	9	5	4	3	2		0		2	3	4	5	9	L	8	6
NUMBER	1,000,000,000	100,000,000	10,000,000	1,000,000	100,000	10,000	1,000	100	10		0.1	0.01	0.001	0.0001	0.00001	0.00001	0.000001	0.0000001	0.000000001
NAME	1 billion	100 million	10 million	1 million	100 thousand	10 thousand	1 thousand	hundred	ten	one	tenth	hundredth	1 thousandth	10 thousandth	100 thousandth	1 millionth	10 millionth	100 millionth	1 billionth


Names: Note how the names decrease 100, 10, 1 and then increase 1, 10, 100.

•

- Number: Nice pattern when you line up the decimal points.
- # of Zeroes: By including the 0 in front of the decimal, this value goes from 9 to 0 to 9.
 - **Exponent**: For numbers > 1 the exponent is the same as the number of zeroes. To fit the pattern, 1 is defined as 10° .

For numbers < 1, the exponent is defined as the negative of the number of zeroes (counting the 0 in front of the decimal point).

- **Fraction**: Kind of artificial (though legitimate) to write the whole numbers as n/1, but it makes the point that the number of zeroes rule works here as well.
 - **Parts per**: ppt = parts per thousand, ppm = parts per million, ppb = parts per billion

